Loading...

Module Overview

There is quite a bit of material in this unit, starting with a couple of new applications of the Chain Rule and then beginning to study what derivatives actually tell us about functions. This latter part, the beginning of Chapter 4, will allow us to graph functions, optimize them (that is, find maximum and minimum points), and even set up the concept of integration.

Learning Outcomes

  • Section 3.8: The first of two more applications of the Chain Rule, this section explores how derivatives and logarithms interact.  We find the derivative of ln x and also emerge with a new method for integrating functions that would have been impossible at first glance.
  • Section 3.9: In this final section of applications of the Chain Rule, we use the method that allowed us to find the derivative of logarithms and extend it to inverse trigonometric functions and even general inverse functions.
  • Section 4.1: The idea behind maximum and minimum points is one of the most important in calculus and its applications.  Without the ideas presented here, there would be very few functions where we could figure out their optimal values.  What we begin here, we will extend over the next few sections into an understanding of how to graph functions and how to optimize real-world processes.
  • Section 4.2: We begin Section 4.2 with this unit, looking at the uses of the first derivative in our analysis of functions.
PROJECT FILES
Type: Video Links
Title Author Description Copyright
Maxima and Minima - Extreme Value Theorem | Link Shai Cohen
Critical Points - an Introduction | Link Shai Cohen
Critical Points - the Definition | Link Shai Cohen
Maxima and Minima - Finding Absolute Extrema | Link Shai Cohen
Derivatives and Logarithms - The Derivative of ln x | Link Shai Cohen
Critical Points Example - Ugly | Link Shai Cohen
Derivatives and Logarithms - The Derivative of Other Logarithms | Link Shai Cohen
Absolute Extrema Example - Intervals | Link Shai Cohen
Derivatives and Logarithms - Logarithmic Differentiation | Link Shai Cohen
Uses of the First Derivative - Increasing and Decreasing Intervals | Link Shai Cohen
Logarithmic Differentiation Example - Easy | Link Shai Cohen
Uses of the First Derivative - The First Derivative Test | Link Shai Cohen
Higher-Order Derivatives Example - Logarithms | Link Shai Cohen
The First Derivative Test - a Second Video | Link Shai Cohen
Logarithmic Differentiation Example - A Silly Example | Link Shai Cohen
Increasing and Decreasing Example - Polynomial | Link Shai Cohen
Derivatives and Inverse Functions - The Derivative of Arcsine | Link Shai Cohen
Increasing and Decreasing Example - Roots | Link Shai Cohen
Increasing and Decreasing Example - Ugly | Link Shai Cohen
Derivatives and Inverse Functions - The Derivative of Inverses | Link Shai Cohen
First Derivative Test Example - Polynomial | Link Shai Cohen
Logarithmic Differentiation Example - With Arc Functions | Link Shai Cohen
Derivative of the Inverse Example | Link Shai Cohen
Maxima and Minima - Absolute | Link Shai Cohen
Maxima and Minima - Relative | Link Shai Cohen