Quizzes for Module 9

Unit 9.1.2

Q 9.1.2.1: For the circuit shown below use superposition to calculate the currents I_{1}, I_{2} and I_{3} when:

1. Only the 1 V source is turned ON and the other source is turned OFF.
2. Only the 2 V source is turned ON and the other source is turned OFF.
3. Calculate the currents when both voltage sources are turned ON.

Solution: (Self Assessment)

1. When 1 V source turned $\mathrm{ON}: I_{1}=0.4 \mathrm{~A}, I_{2}=0.2 \mathrm{~A}$ and $I_{3}=0.2 \mathrm{~A}$.
2. When 2 V source turned $\mathrm{ON}: I_{1}=-0.4 \mathrm{~A}, I_{2}=0.8 \mathrm{~A}$ and $I_{3}=-1.2 \mathrm{~A}$.
3. When both voltage sources are turned $\mathrm{ON}: I_{1}=0 \mathrm{~A}, I_{2}=1 \mathrm{~A}$ and $I_{3}=-1 \mathrm{~A}$.

Unit 9.3.4

Q 9.3.4.1: For the circuits shown below, the right circuit is the Norton equivalent of the circuit on the left. If the open-circuit voltage $V_{A B}=10 \mathrm{~V}$, then calculate the Norton resistance R_{N}.

Solution: (Self Assessment) The Norton resistance $R_{N}=3.3333$ ohms.

Q 9.3.4.2: For the circuit shown below, calculate the open-circuit Thevenin voltage $V_{E F}$ between the terminals E and F .

(F)

Solution: (Self Assessment) The open-circuit voltage $V_{E F}=120 \mathrm{~V}$.

Q 9.3.4.3: For the circuit shown below, calculate the short circuit current $I_{s c}$ between the terminals E and F.

Solution: (Self Assessment) The short-circuit current $I_{s c}=40 \mathrm{~A}$.

Q 9.3.4.4: For the circuit shown below, calculate the input resistance R_{T} between the terminals E and F .

Solution: (Self Assessment) The input resistance $R_{T}=3$ ohms.

