Unit 9.1.2

Q 9.1.2.1: For the circuit shown below use superposition to calculate the currents I_1 , I_2 and I_3 when:

- 1. Only the 1 V source is turned ON and the other source is turned OFF.
- 2. Only the 2 V source is turned ON and the other source is turned OFF.
- 3. Calculate the currents when both voltage sources are turned ON.

Solution: (Self Assessment)

- 1. When 1V source turned ON: $I_1 = 0.4 \text{ A}$, $I_2 = 0.2 \text{ A}$ and $I_3 = 0.2 \text{ A}$.
- 2. When 2V source turned ON: $I_1 = -0.4 \text{ A}$, $I_2 = 0.8 \text{ A}$ and $I_3 = -1.2 \text{ A}$.
- 3. When both voltage sources are turned ON: $I_1 = 0 \text{ A}$, $I_2 = 1 \text{ A}$ and $I_3 = -1 \text{ A}$.

Unit 9.3.4

Q 9.3.4.1: For the circuits shown below, the right circuit is the Norton equivalent of the circuit on the left. If the open-circuit voltage V_{AB} = 10 V, then calculate the Norton resistance R_N .

Solution: (Self Assessment) The Norton resistance R_N = 3.3333 ohms.

Q 9.3.4.2: For the circuit shown below, calculate the open-circuit Thevenin voltage V_{EF} between the terminals E and F.

Solution: (Self Assessment) The open-circuit voltage V_{EF} = 120 V.

Solution: (Self Assessment) The short-circuit current I_{sc} = 40 A.

Q 9.3.4.4: For the circuit shown below, calculate the input resistance R_7 between the terminals E and F.

Solution: (Self Assessment) The input resistance R_T = 3 ohms.