## Problems for Circuit Analysis with Sinusoidal Sources

## After AC1b Sine Characterization

1. If a voltage is a cosine function with an amplitude of 12 V , a frequency of $10 \mathrm{rad} / \mathrm{s}$ and a phase of $30^{\circ}$, when does the voltage first cross through zero after $t=0$ ? (Answer: 33 ms )
2. What is the period (in seconds) of a voltage with a frequency of 60 Hz , an amplitude of 170 V and a $45^{\circ}$ phase shift? (Answer: 16.7 ms )
3. If a voltage source, when characterized as a cosine wave, is specified as having a peak amplitude of 15 V , a frequency of 1 kHz and zero phase shift, what is the value of the source when $t=250 \mu \mathrm{~s}$ ? (Answer: 10.6 V )

## After AC3d Impedance 2

1. The impedance of a capacitor increases with frequency.

True. (Answer: Wrong)
False. (Answer: Correct)
2. At what frequency is the magnitude of a 2.5 mH inductor's impedance equal to the impedance of a $10 \mathrm{k} \Omega$ resistor? (Answer: 637 kHz )
3. If a capacitor is found to have an impedance of $-j 4 \Omega$ at 25 kHz , what is the value of the capacitor? (Answer: $1.59 \mu \mathrm{~F}$ )

## After AC3e Example:

1. Use Phasor analysis to determine the voltage across the capacitor in the circuit shown below. (Answer: $17.2 \cos \left(1000 t+31^{\circ}\right)$


## Problems for Power Calculations in Sinusoidally Driven Circuits

## After PW1b Example: (Instantaneous power)

1. If a current, $i(t)=3 \cos (10 \pi t) \mathrm{mA}$ flows through a $1 \mathrm{k} \Omega$ resistor, what is the instantaneous power delivered to the resistor when $t=0.333 \mathrm{~s}$ ? (Answer: 2.3 mW )
2. If a current, $i(t)=6 \cos (12 \pi t) \mathrm{mA}$ flows through a $10 \mu \mathrm{H}$ Inductor, what is the instantaneous power delivered to the inductor when $t=0.25 \mathrm{~s}$ ? (Answer: 0 W )

## After PW1d Example: (Average of a periodic waveform)

1. Calculate the average value of the voltage shown below. (Answer: 1 V )


## After PW1e Sin Average: (Average power in sinusoidally driven circuits)

1. If the voltage and current supplied to a circuit are know to be $90^{\circ}$ out of phase, what can we say about the power delivered to the circuit?
a. Power is being delivered to the circuit. (Answer: Wrong, $\cos \left(90^{\circ}\right)=0$ so power $=0$ )
b. No power is transferred. (Answer: Correct)
c. Power is being supplied by the circuit. (Answer: Wrong, $\cos \left(90^{\circ}\right)=0$ so power $=0$ )
2. Measurements of a circuit have found that the current is given by $i(t)=2 \cos \left(60 \pi t+15^{\circ}\right) \mathrm{A}$ and the voltage is given by $v(t)=170 \cos \left(60 \pi t+-15^{\circ}\right) \mathrm{V}$. What is teh averag power delivered to the circuit? (Answer: 52.5 W)

## After PW2b Example: (Calculating the effective value)

1. Calculate the effective value of the voltage shown below. (Answer: $2 \mathrm{~V}_{\mathrm{RMS}}$ )

2. Calculate the effective value of the current shown below. (Answer: 5.77 $\mathrm{A}_{\mathrm{RMS}}$ )


## After PW2e Example 2 sines: (Calculating the effective value of combinations of signals)

1. Using the equations developed in the previous video, determine the effective value of a signal composed of three sinusoidal signals with amplitudes of $2 \mathrm{~V}, 3 \mathrm{~V}$ and 5 V . (Answer: $4.36 \mathrm{~V}_{\mathrm{RMS}}$ ).
2. Calculate the effective value of the waveform shown below by considering it to be composed of a dc offset and a square wave with a zero dc average. (Answer: $2.828 \mathrm{~V}_{\mathrm{RMS}}$ )


## After PW3c Example: (Calculating complex power and power factors)

1. A leading PF occurs when the complex power leads the real power;

- True. (Answer: Wrong)
- False (Answer: Correct)

2. The PF of a load composed entirely of resistors and capacitors will;
a. Always be leading. (Answer: correct)
b. Depend on the phase of the applied voltage. (Answer: wrong)
c. Always be lagging. (Answer: wrong)
3. If a circuit is operating at a power factor of 0.5 lagging and the voltage has a phase of $15^{\circ}$, what is the phase angle of the current? (answer: $-45^{\circ}$ )

## After PW3e Example: (Using the power triangle)

1. If a load is specified as 2.5 kW , with a leading PF of 0.866 , what is the value of the reactive power? (Answer: -1.44 kVAR)
2. A load is found to be operating at a lagging PF of 0.5 and drawing 1.6 kVAR , what is the real power supplied to the load? (Answer: 924 W )

## After PW3g PF Example: (Power factor correction)

1. If the complex power delivered to a load from a $60 \mathrm{~Hz}, 120 \mathrm{~V}_{\mathrm{RMS}}$ source is found to be 1.414 kVA (lagging) and it is required to increase the PF to 0.9 , what is the minimum value of capacitance required to be connected in parallel with the load? (Answer: 11 mF )
