Module 3: Electric Potential and Potential Energy

Q1. Electric potential is defined as the amount of:
A force per charge
B electric potential energy per charge (BRAVO!)
C force acting on a charge
D electric potential energy
A,C,D prompt: (Incorrect, review lecture 3.1_Electric Potential)

Q2. A spherical metal shell carries a uniform negative charge. Which statement is true?
A the potential is highest at the center of the shell volume
B the potential is lowest at the center of the shell volume
C the potential at the center of the shell volume is lower than that on the shell surface
D the potential at the center of the shell volume is the same as that on the shell surface (BRAVO! there is zero electric field inside the shell)
$E \quad$ the potential at the center of the shell volume is higher than that on the shell surface
A,B,C,E prompt: (False, review lectures 3.1_Electric Potential and 3.1.1_Electric Potential-Point Charges)

Q3. An electron is pushed in an electric field from one location to another where it gains a 1 V electrical potential. If two electrons are pushed instead of one electron, the electrical potential gained by the two electrons is

A $\quad 4 \mathrm{~V}$
B $\quad 2 \mathrm{~V}$
C $\quad 1 \mathrm{~V}$ (BRAVO! electrical potential is independent of the amount of charge carried by the particle)
D $\quad 0.5 \mathrm{~V}$
E $\quad 0.25 \mathrm{~V}$
A,B,D,E prompt: (Incorrect, review lectures 3.1_Electric Potential)
Q4. A -2 mC particle is placed in a region with an electric field of $1.5 \mathrm{~N} / \mathrm{C}$. Describe the motion of the particle.

A the particle will accelerate along the direction of the electric field. Its potential energy will decrease during the motion.

B the particle will accelerate in a direction parallel to the electric field vectors, but in the opposite direction. Its potential energy will decrease during the motion. (BRAVO! $\overrightarrow{\boldsymbol{F}}=\boldsymbol{q} \overrightarrow{\boldsymbol{E}}, \boldsymbol{U}=-\boldsymbol{q} \boldsymbol{E} \boldsymbol{d}$)

C the particle will move at constant velocity in a direction perpendicular to the electric field vector. Its potential energy will not change during this motion.

D the particle will remain at rest. Its potential energy will increase over time.
A,C,D prompt: (Incorrect, review lecture 3.1_Electric Potential)

Q5. Two isolated metallic spheres, one with a radius r and another with a radius $3 r$, each carries a charge Q uniformly distributed over the entire surface. Which sphere stores more electric energy?

Q

A the smaller sphere (BRAVO! $\boldsymbol{U}=\boldsymbol{Q} \boldsymbol{V}, \mathrm{V}$ is inversely proportional to radius $\boldsymbol{V}=\frac{\boldsymbol{k} \boldsymbol{Q}}{r}$)
B the larger sphere
C needs more information
B,C prompt: (Incorrect, review lectures 3.1_Electric Potential, 3.1.1_Electric Potential-Point Charges and 3.1.4_Electric Potential Example)

Q6. A charge Q is at the origin. Charge $q_{1}=q$ and charge $q_{2}=2 q$. If all charges are positive, which charge (q_{1} or q_{2}) is at the higher potential?

A $\quad q_{1}$ (BRAVO! electrical potential of a point charge (Q) is inversely proportional to the distance)

B both are at the same potential
C $\quad q_{2}$
B,C prompt: (Incorrect, review lecture 3.1.4_Electric Potential Example)

Q7. Charge $q_{1}=+q$ and charge $q_{2}=+2 q$. Which charge $\left(q_{1}\right.$ or $\left.q_{2}\right)$ has the higher electrostatic potential energy?

A q_{1}
B both have the same potential energy (BRAVO! $\left.\left(\boldsymbol{q}_{1}\right)=\frac{Q q}{4 \pi \varepsilon_{0} r}, \boldsymbol{U}\left(\boldsymbol{q}_{2}\right)=\frac{Q 2 q}{4 \pi \varepsilon_{0} 2 r}=\frac{Q q}{4 \pi \varepsilon_{0} r}\right)$
C $\quad \mathrm{q}_{2}$
A,C prompt: (Incorrect, review lecture 3.1.4_Electric Potential Example)

Q8. A 10 mC particle is moved from infinity to a point where the electric potential energy is 5 J . What is the electric potential at the particle's destination?

A $\quad 2 \mathrm{mV}$
B $\quad 2 \mathrm{~V}$
C $\quad 50 \mathrm{mV}$
D $\quad 500 \vee$ (BRAVO! $V=\frac{U}{q}$)
E need additional information.
A,B,C,E prompt: (Incorrect, review lecture 3.1.4_Electric Potential Example)

