## Problems for Capacitors and Inductors

## After LC1a Introduction (Capacitors)

1. Determine the charge stored on a $2.2 \mu \mathrm{~F}$ capacitor if the capacitor's voltage is 5 V . Answer: $11 \mu \mathrm{~F}$,
2. In some integrated circuits, the insulator or dielectric is silicon dioxide, which has a relative permittivity of 4 . If a square capacitor measuring $10 \mu \mathrm{~m}$ on edge, has a capacitance of 100 fF , what is the separation distance between the capacitor's plates, in $\mu \mathrm{m}$ ? Answer: 35.4 nm .

## After LC1c Example (Capacitors)

1. If the voltage across a 47 mF capacitor is found to be +10 V at an instant in time, what is the current flowing into the capacitor's positive terminal?
a. 470 mA Wrong - the current depends on the derivative of the voltage.
b. 0 A Wrong - the current depends on the derivative of the voltage.
c. 213 A Wrong - the current depends on the derivative of the voltage.
d. insufficient information Right - the current depends on the derivative of the voltage.
2. If a constant current of $440 \mu \mathrm{~A}$ charges a capacitor of value 2.2 mF , with an initial voltage of 1.25 V , what is the capacitor's final voltage after 10 seconds?
Answer: 3.25 V

## After LC1d Power (Capacitor)

1. When the charge on a capacitor is doubled, the stored energy;
a. decreases by a factor of 4 Answer: Wrong
b. decreases by a factor of 2 Answer: Wrong
c. stays the same Answer: Wrong
d. increases by a factor of 2 Answer: Wrong
e. increases by a factor of 4 Answer: Correct
2. If the voltage on a 15 mF capacitor changes from 3 V to 4 V , how much additional energy is stored on the capacitor?
Answer: 52.5 mJ

## After LC2a Introduction (Inductors)

1. If the current through a 5 mH inductor is increasing at $3 \mathrm{~A} / \mathrm{s}$, what is the voltage across the inductor? Answer: 15 mV
2. The current in an $8 \mu \mathrm{H}$ inductor is given by $i(t)=3 t+2 \mathrm{~A}$. What is the value of the inductors voltage at $t=2 \mathrm{~s}$ ? Answer: $24 \mu \mathrm{~V}$

## After LC2b Symbol I-V (Inductors)

1. If the voltage across a 10 mH inductor is found to be zero;
a. What is the current?
a: 10 mA Wrong: insufficient information.
b: 0 mA Wrong: insufficient information.
c: -10 mA Wrong: insufficient information.
d: none of the above Wrong: insufficient information.
e: unknown Correct: We only know the rate of change of the current is zero.
b. What is the magnitude of the rate of change of the current?

Answer: $1 \mathrm{~mA} / \mathrm{s}$
2. The current through a $5 \mu \mathrm{H}$ inductor is $3 \sin (12,000 t) \mathrm{mA}$, What is the voltage across the inductor? Answer: $180 \mu \mathrm{~V}$

## After LC2d Example (inductor)

1. If the voltage across an inductor is zero, it contains stored energy.
a) True Wrong - the energy stored in an inductor is determined by the current.
b) Unknown Correct - the current determines the stored energy
c) False Wrong - until we know the current, logically, we cannot make this claim.
2. If the current flowing through a 6 H inductor is given by $i(t)=4 \cos (2 \pi 60 t) \mathrm{A}$, How much energy is stored in the inductor at time $t=5 \mathrm{~s}$.? Answer 48 J

## After LC3d Inductors in Parallel

1. If $L=420 \mu \mathrm{H}$, determine the equivalent inductance of each network shown below.
Answers:
a) $1.26 \mathrm{mH} \quad$ b) $140 \mu \mathrm{H}$

a)

b)
2. If $L_{1}=8 \mathrm{H}, L_{2}=5 \mathrm{H}$ and $L_{3}=12 \mathrm{H}$, determine the equivalent capacitance of the network shown to the right. Answer: 4 H


## After LC3e Capacitors in Parallel

1. If $C=90 \mathrm{~F}$, find the equivalent capacitance of each network shown below:
a) $\left.C_{e q}=45 \mathrm{~F}, \mathrm{~b}\right) C_{e q}=180 \mathrm{~F}$

a)
b)

## Problems for First Order RC and RL Circuits

## After Step1a Introduction

1. Identify which of the following circuits are first order RC circuits.
a. Yes
No
Answer: No
b. Yes $\bigcirc$ No Answer: Yes


## After Step 1b Time Constant

1. Find the time constant for the following circuits;

Answers: a) 1 ns , b) $100 \mu \mathrm{~s}, ~ c) ~ 132 \mathrm{~s}$.

2. If $x(t)=16 e^{-t / 10 \mathrm{~ns}}$, at what time is the value of $x$ half its value at $t=0$ ?

Answer: 6.9 ns.
3. If $v(t)=5-5 e^{-t / 2 \mathrm{~ms}} \mathrm{~V}$;
a. What is the value of $v$ when $t$ is infinite? Answer: 5 V
b. At what time is the value of $v$ equal to half of its final value? Answer: 1.4 ms .

## After Step1c Example

1. The capacitor shown below is initially charged to 12 V . If the switch closes at $t=0$, determine;
a. the initial value of the current $i_{R}$, after the switch closes. Answer: 8 mA
b. the time constant for the current after the switch closes. Answer: 3 ms
c. the value of the current at 4 ms . Answer: 2.1 mA
d. the time when the current has decreased to 5\% of its initial value. Answer: 9 ms

2. If the switch in the circuit shown to the right has been closed a long time and opens at $t=0$, determine;
a. the initial capacitor voltage. Answer: 10 V .
b. the capacitor voltage after the switch has been open a very long time. Answer: 7.5 V
c. the capacitor voltage after 0.2 s . Answer: 7.84 V .


## After Step3a RL Natural

1. Identify which of the following circuits are first order RL circuits.
a. Yes $\bigcirc$ No
Answer: Yes
b. Yes $\bigcirc$ No
Answer: No

2. Find the time constant for the following circuits;

Answers a) $1.8 \mathrm{~ns}, \mathrm{~b}) 16 \mathrm{ps}$.


## After Step3c RL Step2

1. If the switch in the circuit shown below has been open a long time and closes at $t=0$, determine;
a. the initial value of the voltage $v_{R}$, after the switch closes. Answer: 1 V .
b. the time constant or the current after the switch closes. Answer: $2 \mu \mathrm{~s}$.
c. the value of the voltage at $5 \mu \mathrm{~s}$. Answer: 82 mV .


## After Step3e RL Example

1. The switch in the circuit shown to the right has been open a long time. If the switch closes at $t=0$ and then re-opens at $t=50 \mathrm{~ms}$, determine;
a. the capacitor's voltage, $v_{C}$ at $t=50 \mathrm{~ms}$. Answer: 6.1 V .
b. the capacitor's voltage at $t=100 \mathrm{~ms}$. Answer: 2.7 V.

