Inductor Example (determine equivalent inductance)

What should the value of the inductance L_{x} be to yield a total equivalent inductance of $\frac{4}{3} H$?

Solution

Set up an equation for the equivalent inductance, recalling that in series: $L_{\text {equivalent }}=\Sigma L_{i}$ and in parallel: $L_{\text {equivalent }}=\left[\Sigma\left(\frac{1}{L_{i}}\right)\right]^{-1}$

Let L^{\prime} be the equivalent inductance of the top 3 inductors: L_{x} in parallel with the $2 _\mathrm{H}$ and together in series with 1_H.
$L^{\prime}=\left[\frac{1}{L_{x}}+\frac{1}{2}\right]^{-1}+1 \quad$ Simplifying, we obtain: $L^{\prime}=\frac{3 L_{x}+2}{L_{x}+2}$
L^{\prime} is added in parallel with the $4 _H$ inductor as follows:

$$
L_{\text {equivalent }}=\left[\frac{1}{4}+\frac{1}{L^{\prime}}\right]^{-1}
$$

Plugging in the expression for L^{\prime} we obtain: $L_{\text {equivalent }}=\frac{4\left(3 L_{x}+2\right)}{7 L_{x}+10}$
Equating this to the required equivalent inductance of $\frac{4}{3} \mathrm{H}$ and solving yields: $L_{x}=2 \mathrm{H}$
Answer: $\boldsymbol{L}_{\boldsymbol{x}}=2 \boldsymbol{H}$

