Potential Hard Example (change in potential energy of a charge)

A charge $+q$ is moving along a straight line from $A \rightarrow B$, at a 45 degree angle from the direction of a uniform electric field, as illustrated in the diagram below. Calculate the change in electric potential energy of the particle due to the change in position.

Solution

Step 1: Break down the path AB into segments.
One segment AO is perpendicular to the electric field, and the other OB parallel to it:

Step 2: Calculate the potential difference for each path segment.

$$
\Delta V=\Delta V_{A \rightarrow O}+\Delta V_{O \rightarrow B}
$$

Since points A and O are on a path perpendicular to the electric field, they are on an equipotential line. This means that the potential at both points are the same (i.e. $V_{A}=V_{O}$) resulting in $\Delta V_{A \rightarrow O}=V_{O}-V_{A}=0 V$

Since points B and O are on a path parallel to the electric field, they have different potential values (i.e. $V_{B} \neq V_{O}$). Thus, $\Delta V_{O \rightarrow B}=V_{B}-V_{O}=-E * r_{O B}$

The negative sign is due to the fact that the positive particle is moving in the direction of electric field; i.e. in the direction of decreasing potential.

Step 3: Add up the two segments to get the total potential difference:

$$
\Delta V=\Delta V_{A \rightarrow O}+\Delta V_{O \rightarrow B}=0-E * r_{O B}=-E * r_{O B}
$$

Plug in any given values.
We are only given the distance from A to B , but in our final equation we need the distance between O and B. To obtain this, we use the geometrical relationship: $r_{O B}=r * \cos (45)$

$$
\Delta V=-E * r * \cos (45)=-\frac{E r}{\sqrt{2}}
$$

Step 4: Calculate the potential energy using the equation: $\Delta U=q \Delta V$
Answer: the particle losses potential energy as a result of moving from point A to $\mathrm{B}: \Delta U=-\frac{q E r}{\sqrt{2}}$

