Potential Easy Example (potential energy of charges)

Calculate the change in potential energy due to bringing 2 charges of opposite signs from infinity to the positions illustrated in the diagram:

Solution

Step 1: Relate potential energy of the system to the electric potential: $\Delta U=q \Delta V$

$$
\Delta U=\Delta U_{q 1}+\Delta U_{q 2}
$$

Step 2: Calculate the change in potential energy of bringing in q_{1} from infinity to point A , assuming the other charge, q_{2} stays at infinity.

$$
\Delta U_{q 1}=q_{1} \Delta V_{\infty \rightarrow A}
$$

But, since $V_{\infty}=0$ and $V_{A}=0$ (because there is no electric field from any source):

$$
\Delta V_{\infty \rightarrow A}=V_{A}-V_{\infty}=0-0=0 V
$$

Therefore: $\Delta U_{q 1}=0$

$$
\mathrm{V}=0 \mathrm{~V}
$$

Step 3: Calculate the change in potential energy of bringing in q_{2} from infinity to point B .

$$
\Delta U_{q 2}=q_{2} \Delta V_{\infty \rightarrow B}
$$

where $V_{\infty}=0$ again, but $V_{B} \neq 0$ because q_{1} is in the same space and is producing an electric field that affects particle $q_{2}: V_{B}=\frac{k q_{1}}{r_{A B}}$

Hence: $\Delta U_{q 2}=q_{2}\left(V_{B}-V_{\infty}\right)=\frac{k q_{1} q_{2}}{r_{A B}}$ where $r_{A B}=r$ is the final distance between the two particles.
Step 4: Add up the potential energies: $\Delta U=\Delta U_{q 1}+\Delta U_{q 2}=0+\frac{k q_{1} q_{2}}{r_{A B}}=\frac{k q_{1} q_{2}}{r_{A B}}$

