Field Hard Example (determine the electric field due to two charges):

Determine the magnitude and direction of the electric field vector at point p.
Given: $Q_{a}=-1 C, Q_{b}=3 C, d=1 \mathrm{~cm}$ and $\mathrm{k}=9 * 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

Solution

Step 1: Determine the direction of the electric field due to each charge separately.
Recall that the electric field is pointing away from the centre of a positive charge, but towards the centre of a negative charge. The electric fields are illustrated in the diagram below:

Step 2: Determine the direction of the electric field at point p.
The electric field vector must be directed along the line connecting p and the centres of each charge, i.e. along the dotted lines. The direction of each arrow - towards or away from the charge - is determined by the type of charge, as explained in the previous step.

Step 3: Calculate the magnitude of each electric field at point p.
To apply the electric field equation $|\vec{E}|=\frac{k Q}{r^{2}}$ we must first determine the values of r_{a} and r_{b} which are measured from point p to the centre of charges Q_{a} and Q_{b}, respectively.

From geometry we see that: $r_{a}=\sqrt{d^{2}+d^{2}}=\sqrt{2} d$ and $r_{b}=\sqrt{d^{2}+(2 d)^{2}}=\sqrt{5} d$
Plugging these into the above equation:

$$
\left|\overrightarrow{E_{a}}\right|=\frac{k Q_{a}}{r_{a}^{2}}=\frac{k Q_{a}}{(\sqrt{2} d)^{2}}=\frac{k Q_{a}}{2 d^{2}} \text { and }\left|\overrightarrow{E_{b}}\right|=\frac{k Q_{b}}{r_{b}^{2}}=\frac{k Q_{b}}{(\sqrt{5} d)^{2}}=\frac{k Q_{b}}{5 d^{2}}
$$

Step 4: Decompose vectors into x and y components using unit vectors i and j respectively.

$\tan (\beta)=\frac{d}{d}=1 \Rightarrow B=\tan ^{-1}(1)=45^{\circ}$
$\tan (\alpha)=\frac{d}{2 d}=\frac{1}{2} \Rightarrow \alpha=\tan ^{-1}(1 / 2)=26.6^{\circ}$
$\left|\overrightarrow{E_{a l}}\right|=\left|\overrightarrow{E_{a}}\right| \cos (\beta)$ and $\left|\overrightarrow{E_{a \jmath}}\right|=\left|\overrightarrow{E_{a}}\right| \sin (\beta)$
$\left|\overrightarrow{E_{b}}\right|=\left|\overrightarrow{E_{b}}\right| \cos (\alpha)$ and $\left|\overrightarrow{E_{b}}\right|=\left|\overrightarrow{E_{b}}\right| \sin (\alpha)$
Therefore:
$\overrightarrow{E_{a}}=-\left|\overrightarrow{E_{a}}\right| \cos (\beta) i+\left|\overrightarrow{E_{a}}\right| \sin (\beta) j$
$\overrightarrow{E_{b}}=-\left|\overrightarrow{E_{b}}\right| \cos (\alpha) i-\left|\overrightarrow{E_{b}}\right| \sin (\alpha) j$
Step 5: Sum up the electric field vectors to obtain a net field at point p .

$$
\overrightarrow{E_{\text {Total }}}=\overrightarrow{E_{a}}+\overrightarrow{E_{b}}=-\left|\overrightarrow{E_{a}}\right| \cos (\beta) i+\left|\overrightarrow{E_{a}}\right| \sin (\beta) j-\left|\overrightarrow{E_{b}}\right| \cos (\alpha) i-\left|\overrightarrow{E_{b}}\right| \sin (\alpha) j
$$

Group i and j components:

$$
\overrightarrow{E_{\text {Total }}}=-\left[\left|\overrightarrow{E_{a}}\right| \cos (\beta)+\left|\overrightarrow{E_{b}}\right| \cos (\alpha)\right] i+\left[\left|\overrightarrow{E_{a}}\right| \sin (\beta)-\left|\overrightarrow{E_{b}}\right| \sin (\alpha)\right] j
$$

Plug in the magnitudes of the electric fields:
$\overrightarrow{E_{\text {Total }}}=-\left[\frac{k Q_{a}}{2 d^{2}} \cos (\beta)+\frac{k Q_{b}}{5 d^{2}} \cos (\alpha)\right] i+\left[\frac{k Q_{a}}{2 d^{2}} \sin (\beta)-\frac{k Q_{b}}{5 d^{2}} \sin (\alpha)\right] j$
Plug in the numerical values:
$\overrightarrow{E_{\text {Total }}}=\frac{9 * 10^{9}}{\left(10^{-2}\right)^{2}}\left\{-\left[\frac{1}{2} \cos (45)+\frac{3}{5} \cos (26.6)\right] i+\left[\frac{1}{2} \sin (45)-\frac{3}{5} \sin (26.6)\right] j\right\}$
$\overrightarrow{E_{\text {Total }}}=-8.01 * 10^{13} i+7.64 * 10^{12} j(\mathrm{~N} / \mathrm{C})$
Note: The total electric field at point p is pointing in the negative x and positive y directions.
Its magnitude is: $\quad\left|\overrightarrow{E_{\text {Total }}}\right|=\sqrt{(8.01)^{2}+(0.764)^{2}} * 10^{13}=8.05 * 10^{13}(\mathrm{~N} / \mathrm{C})$

