## Capacitor Example (for a network of capacitors)

Calculate the total potential energy stored in the capacitors in the circuit.


## Solution

Step 1: Replace all capacitors with a single equivalent capacitor.
To calculate the equivalent capacitance, recall that for capacitors in parallel $C_{\text {equivalent }}=\Sigma C_{i}$ and for capacitors in series: $C_{\text {equivalent }}=\left[\Sigma \frac{1}{C_{i}}\right]^{-1}$
In this circuit, C1 and C2 are in parallel, and together they are in series with C3.

$$
C_{\text {equivalent }}=\left[\frac{1}{C 1+C 2}+\frac{1}{C 3}\right]^{-1}=\frac{C 3(C 1+C 2)}{C 1+C 2+C 3}=\frac{3(1+2)}{1+2+3}=\frac{3}{2} \text { (F) }
$$

Step 2: Draw the equivalent circuit.


Step 3: Calculate the total potential energy stored in the equivalent capacitor.
Recall that the equation for the energy stored in a capacitor is given by: $U=\frac{C V^{2}}{2}$
Thus, $U_{\text {total }}=\frac{C_{\text {equivalent }} V^{2}}{2}=\frac{1.5(10)^{2}}{2}=75(\mathrm{~J})$
Answer: The total energy stored in the capacitors is 75 J .

